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1 Introduction

Complex geometry remains a challenging issue facing the application of ad-
joint and flow-sensitivity methods in practical engineering design. Among the
most promising approaches for complex-geometry problems is the embedded-
boundary Cartesian mesh method [1]. In this approach, the discretization of
the surface geometry is decoupled from that of the volume mesh, which enables
rapid and robust mesh generation, and ultimately, an automatic analysis of
aerodynamic performance. The purpose of this work is to extend the automa-
tion and efficiency of Cartesian methods to the computation of aerodynamic
sensitivities for shape optimization problems.

The most common way to account for the effect of boundary shape per-
turbations in the adjoint and flow-sensitivity formulations is via domain map-
ping approaches. In implementations on body-fitted structured or unstructured
meshes, this involves the use of mesh-perturbation schemes. For local shape
deformations, the extent of the mesh perturbations can be limited to just
the boundary cells [2, 3, 4]. The approach we propose here for non-body-
fitted Cartesian meshes is similar, but the boundary faces of the volume mesh
maintain their Cartesian orientation as the surface evolves. This approach
permits the computation of mesh sensitivities via a direct linearization of the
boundary-cell geometric constructors of the mesh generator.

2 Discrete Adjoints and Flow Sensitivities

Our goal is to minimize a scalar objective function J , such as drag, by ad-
justing a design variable X using gradient-based optimization. To compute
the gradient, dJ /dX, we use a discrete formulation. Hence, a variation in X
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influences the computational meshM and the flow solution Q, which satisfies
the three-dimensional Euler equations of a perfect gas. The spatial discretiza-
tion of the flow equations uses a cell-centered, second-order accurate finite
volume method with a weak imposition of boundary conditions, resulting in
a system of equations

R(X,M ,Q) = 0 (1)

whereM is an explicit function of the surface triangulation T :M = f [T (X)].
The gradient of the objective function J (X,M ,Q) is given by
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The evaluation of the term dQ/dX, referred to as the flow sensitivities, is
obtained by linearizing Eq. 1
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The adjoint equation is obtained by combining Eqs. 3 and 2 and defining
the following intermediate problem
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∂J
∂Q

T

(4)

where the vector ψ represents the adjoint variables. Details of the solution
method for Eqs. 3 and 4 are given in [5]. We focus on the evaluation of the
terms A and B in Eqs. 2 and 3, which are discussed in the next section.

3 Shape Sensitivities

The flow equations are discretized on a multilevel Cartesian mesh. The mesh
consists of regular Cartesian hexahedra everywhere, except for a layer of body-
intersecting cells, or cut-cells, adjacent to the boundaries. An infinitesimal
perturbation of the boundary shape affects only the cut-cells. Consequently,
the mesh-sensitivity term ∂M/∂T , which contains the linearization of the
Cartesian-face areas and centroids, volume centroids and the wall normals
and areas with respect to the surface triangulation, is non-zero in these cells.
The crux in the evaluation of ∂M/∂T is the linearization of the geometric
constructors that define the intersection points between the surface triangu-
lation and the Cartesian hexahedra.

We explain the salient steps of the linearization using the example shown
in Fig. 1, where a Cartesian hexahedron is split into two cut-cells by the
surface triangulation. We require the linearization of the intersection points
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that lie on Cartesian edges, e.g., point A, and also those that lie on triangle
edges, e.g., point B. Focusing on point B, its location along the triangle edge
V0V1 is given by

B = V0 + s(V1 − V0) (5)

where s denotes the distance fraction of the face location relative to the ver-
tices V0 and V1. The linearization of this geometric constructor is given by

∂B

∂X
=

∂V0

∂X
+ s(

∂V1

∂X
− ∂V0

∂X
) + (V1 − V0)

∂s

∂X
(6)

A similar constructor is used for point A [6]. An example result of the lineariza-
tion is shown in Fig. 1 for the position sensitivity of Cartesian face centroids.

Fig. 1. Sensitivity of face centroids
(solid vectors) to perturbation of
vertex V1.

Note that the “motion” of the face cen-
troids is constrained to the plane of the
face. An advantage of this formulation is
that the dependence of the mesh sensitiv-
ities ∂M/∂T on the surface triangulation
(∂V1/∂X in Eq. 6 and the term ∂T /∂X
in Eq. 3) is determined on-the-fly for each
instance of the surface geometry. Put an-
other way, there is no requirement for a
one-to-one triangle mapping as the surface
geometry changes. This allows a flexible in-
terface for geometry control based on tools
such as computer-aided design (CAD).

4 Verification Studies

4.1 Supersonic Vortex Problem

We investigate the error convergence rate of a representative objective func-
tion and its gradient on a model problem with a known analytic solu-
tion [6]. The problem involves isentropic flow between concentric circular
arcs at supersonic conditions, as shown in Fig. 2. The objective function

r
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ro

ri

Inflow

!
Outflow

M

Fig. 2. Problem setup
(Mi = 2.25, ri = 1 and
ro = 1.382)

is the integral of pressure along the outer arc, which
is similar to the lift and drag objectives used in aero-
dynamic design. We compute the gradient and the
sensitivities of the flow solution, Eq. 3, with respect
to the inlet Mach number, Mi. The problem is solved
on a sequence of five nested Cartesian meshes.

Figure 3 summarizes the results. Figure 3(a)
shows the error convergence rates in the L1 norm
of density and its sensitivity to variations in Mi.
The error convergence rate of the objective function
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(b) Objective function and gradient

Fig. 3. Error convergence (slopes are computed using the three finest meshes)

and its gradient is shown in Fig. 3(b). The asymptotic convergence rate of all
errors, which is measured over the three finest meshes, is just slightly over 2.
These results verify the accuracy of the linearization and the convergence of
these methods to the continuous problem.

4.2 Shape sensitivities for the NACA 0012 airfoil

The goal of this verification test is to study the convergence of gradients for
design variables that alter the shape of the boundary. We consider a subsonic
flow over the NACA 0012 airfoil at M∞ = 0.5 and α = 1 deg. We investigate
the sensitivity of lift to the angle of attack using two equivalent approaches.
First, we consider the influence of the angle of attack via a change in the
farfield boundary conditions, which does not alter the relationship between
the mesh and the airfoil. We contrast this with an angle of attack change
implemented via a rigid-body rotation of the airfoil about its trailing edge
within a fixed mesh. The mesh-refinement study is performed on a sequence
of five nested Cartesian meshes for each airfoil orientation.

The results are summarized in Fig. 4. Referring to Fig. 4(b), note that the
differences in the gradients between the farfield and rigid-body rotation cases
are decreasing as the mesh is refined. Additional regression analysis of this
data indicates that the rate of convergence is first-order. This is a consequence
of the fact that the mesh perturbations are confined to only the cut-cells.
Unlike the supersonic vortex problem, a perturbation of the angle of attack
via rigid-body rotation modifies the cut-cell boundary and introduces an error
in the objective function proportional to second-order spatial discretization.
Nevertheless, the gradient values for the rigid-body rotation case, even on the
coarsest mesh of roughly 3, 200 cells, are within 1% of the fine-mesh values.

5 Design Example: Reentry Capsule

We consider the optimization of a heat-shield shape for a reentry capsule. The
objective is to enhance the lift-to-drag ratio, L/D, of the capsule, thereby im-
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Fig. 4. Convergence of lift and its gradient with respect to angle of attack: imple-
mented via the farfield boundary (“Farfield”) and rigid-body rotation (“Shape”)

proving trajectory control for landing-site selection, and reducing the reentry
load factor and heat rates. The Pro/ENGINEER R© Wildfire CAD system is
used to create the geometry model. The capsule configuration is shown in
Fig. 5(a), where the design variables are the three labeled spline points of the
heat-shield center-line. The freestream conditions are M∞ = 10 and α = 156.5
deg., measured clockwise from the positive x-axis. High-temperature effects
are approximated by the use of an “effective” ratio of specific heats, γ. We use
γ = 1.3. The initial (symmetric) capsule generates an L/D of 0.37, which is
attained using a center-of-gravity offset. The target value of L/D is set to 0.4.
The volume mesh contains roughly 665, 000 cells and we use 64 processors to
solve the flow and adjoint equations.

Convergence of the optimization problem is shown in Fig. 5(b). The target
L/D is reached within five design iterations and the L2 norm of the gradient is
reduced by roughly four orders of magnitude. The initial and final heat-shield
shapes are shown in Figs. 5(c) and 5(d), respectively. The shape modifica-
tions are relatively minor, yet the improvement in L/D is 8%. The wall-clock
time per design iteration is approximately 11 minutes. This time includes the
regeneration and triangulation of the part, as well as the flow solution and
adjoint gradient computation. We emphasize that for problems with more
design variables, the design-cycle time would remain essentially constant.

6 Conclusions

We have presented an approach for the computation of aerodynamic shape
sensitivities using a discrete formulation on Cartesian meshes with cut-cells at
the wall boundaries. The verification studies show that the convergence rate
of gradients is second-order for design variables that do not alter the bound-
ary shape, and is reduced to first-order for shape design variables. This is a
consequence of confining the mesh sensitivities to the cut-cells. The design
example demonstrates the effectiveness of the new approach for engineering
design studies that require a fast turn-around and include CAD-based geom-
etry, complex flow, and many design variables.
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Fig. 5. Heat-shield shape optimization (M∞ = 10, α = 156.5◦, γ = 1.3)
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